반응형

[SPSS] 대응 표본 T검정 (Paired samples T-test)

 

 세상에 존재하는 모든 사람을 대상으로 연구를 하면 참 좋겠지만, 시간적인 이유로, 그리고 경제적인 이유로 일부를 뽑아서 연구를 진행할 수밖에 없다. 모든 사람을 모집단이라고 하고, 뽑힌 일부를 표본이라고 한다. 우리는 표본으로 시행한 연구로 모집단에 대한 결론을 도출해내고자 할 것이다. 

 1000명에게 피검사를 시행하였고, 간 기능 검사의 일환으로 ALT 수치를 모았다. 그리고, 간 기능 개선제를 복용시킨 뒤 ALT 검사를 다시 시행하였다. 이 데이터를 기반으로 1000명이 기원한 모집단 인구에서 간 기능 개선제 복용은 ALT 수치를 개선시키는지 여부를 확인하는 것이 T-test이다. T-test는 크게 세 가지로 나눌 수 있다.

 

 1) 일표본 T검정 (One sample T-test) : 2022.11.29 - [모평균 검정/SPSS] - [SPSS] 일표본 T검정 (One-sample T-test)

 : 모집단의 평균이 특정 값이라고 할 수 있는가?

 예) 모집단의 ALT 평균이 50이라고 할 수 있는가?

 

 

 2) 독립 표본 T검정 (Independent samples T-test, Two samples T-test) : 2022.11.30 - [모평균 검정/SPSS] - [SPSS] 독립 표본 T검정 (Independent samples T-test)

 : 두 모집단의 평균이 다르다고 할 수 있는가?

 예) 고혈압 환자와 일반인의 수축기 혈압 평균이 서로 다르다고 할 수 있는가?

 

 3) 대응 표본 T검정 (Paired samples T-test) 

 : 모집단의 짝지어진 변수들의 평균이 다르다고 할 수 있는가?

예) 간 기능 개선제 복용 전 ALT 평균은 간기는 개선제 복용 후 ALT 평균과 다르다고 할 수 있는가?

 

이번 포스팅에서는 대응 표본 T검정 (Paired samples T-test)에 대해 알아볼 것이다.

 

 

왜 대응 표본 T 검정이 필요할까?

 독립 표본 T 검정을 공부한 사람이라면 대응 표본 T 검정의 필요성에 대해 의구심을 가질 수 있다. 간 기능 개선제 복용 전 ALT와 간 기능 개선제 복용 후 ALT에 대해 독립 표본 T 검정을 돌리면 될 것이라고 생각할 수 있기 때문이다. 하지만 결론적으로 그렇게 하면 안 된다. 예를 들어 다음 사례를 봐보자.

환자 번호 시험 공부 전 시험 점수 시험 공부 후 시험 점수
1번 0.1 0.2
2번 0.2 0.3
...
999번 99.9 100.0
1000번 100.0 100.0

1000명이 시험을 보았고, 원래 100점을 받았던 1000번을 제외한 모든 사람이 시험공부로 0.1점이 올랐다. 1000명 중 999명의 점수가 올랐으므로 공부는 시험 점수를 올리는데 유의미한 영향력을 미칠 수 있다고 결론이 나야 합당할 것이다. 하지만 공부 전 후 시험 점수의 평균은 둘 다 50점에 가깝고 큰 변화는 없는 것처럼 보인다. 따라서 독립 표본 T 검정으로 내린 결론은 잘못된 것이다. 즉, 대응되는 (paired) 경우 그 값 자체보다는 둘 사이의 차이에 집중해야 한다.

 

*실습용 데이터는 아래 링크를 클릭하면 다운로드할 수 있습니다.

2022.08.04 - [공지사항 및 소개] - 분석용 데이터 (update 22.11.28)

 

분석용 데이터 (update 22.11.28)

2022년 11월 28일 버전입니다. 변수는 계속하여 추가될 예정입니다. 다음 카테고리에 있는 글에서 이용된 데이터입니다. - 기술 통계 - 범주형 자료 분석 - 모평균 검정 - 반복 측정 자료 분석 - 통계

medistat.tistory.com

 

데이터를 불러오도록 한다. 불러오는 방법은 다음 링크를 확인하도록 한다.

2022.08.04 - [통계 프로그램 사용 방법/SPSS] - [SPSS] 데이터 불러오기 및 저장하기

 

전제: 정규성 검정 (차이)

 대응 표본 T 검정 (Paired samples T test)의 전제 조건은 검정하고자 하는 두 변수의 차이가 정규분포를 따른다는 것이다. 따라서 ALT와 간 기능 개선제 복용 후 ALT(ALT_POSTMED)의 차이를 구하고 정규성 검정을 시행한다. 

차이를 구하는 방법: 2022.11.30 - [통계 프로그램 사용 방법/SPSS] - [SPSS] 변수 계산 (산술 연산)

정규성 검정을 하는 방법: 2022.08.11 - [기술 통계/SPSS] - [SPSS] 정규성 검정

2022.08.18 - [기술 통계/SPSS] - [SPSS] 고급 Q-Q Plot - Van der Waerden, Rankit, Tukey, Blom

 

차이 구하기

1) 변환(T) > 변수 계산(C)

2)ALT와 ALT_POSTMED의 차이를 ALT_DIF로 지정하기. 그리고 "확인"을 누른다

 

정규성 검정하기

1) 분석 (A)>기술통계량 (E) > 데이터 탐색 (E)

 

2) 분석하고자 하는 변수를 "종속변수(D)" 쪽으로 이동

 

3) 도표(T)를 누르고, "히스토그램(H)", "검정과 함께 정규성도표(O)" 체크박스를 클릭. 다 되었으면 "계속(C)" 클릭. 그 이후에 "확인" 클릭

 

결과

N 수는 1000으로 2000 미만이므로 Shapiro-Wilk 통계량을 봐야하고 이 검정의 p-value는 0.05 이상이다. Q-Q plot상에서 대부분의 데이터가 직선상에 있으며, 히스토그램 또한 정규분포를 따르는 것처럼 보이므로 두 변수의 차는 정규분포를 따른다고 할 수 있다. 따라서 대응 표본 T 검정 (Paired samples T test)를 시행할 수 있다.

 

대응 표본 T 검정 방법

1) 분석(A) > 평균 비교 (M) > 대응표본 T 검정 (P)

 

2)분석하고자 하는 두 개의 변수  ALT와 ALT_POSTMED를 각각 "대응 변수(V)"쪽으로 아래 그림과 같이 옮긴다. 그 후 확인을 누른다.

 

결과

1) 기술통계

ALT와 ALT_POSTMED에 대한 기술통계가 나온다. 쓱 보고 넘긴다.

 

2) 대응 표본 T 검정 결과

결과를 하나씩 뜯어보자

ALT는 ALT_POSTMED보다 2.8326만큼 더 크고, 그 차이에 대한 p-value는 <0.001로 매우 유의하다. 따라서 귀무가설을 기각할 수 있다. 본 검정의 귀무가설은 다음과 같다.

 귀무가설: $H0=$간 기능

이를 기각하므로 동일하지 않다고 할 수 있고, 간 기능 개선제 복용 후 ALT가 2.8363만큼 낮아져 간 기능에 호전이 있다고 평가할 수 있다.  

 

$$ALT=ALT_{POSTMED}$$

$$\therefore ALT_{DIF}=ALT−ALT_{POSTMED}=0$$

 

즉, 대응 표본 T 검정을 시행하는 것은 ALT_DIF변수의 평균이 0과 같은지 검정하는 일표본 T검정 (One sample T test)와 같은 것이다. 일표본 T 검정은 다음 링크에서 확인할 수 있다. 2022.11.29 - [모평균 검정/SPSS] - [SPSS] 일표본 T검정 (One-sample T-test)

 

일표본 T 검정으로 대응 표본 T 검정 시행하기

 

1) 분석(A) > 평균 비교 (M) > 일표본 T 검정 (S)

 

2) 분석하고자 하는 변수 ALT를 "검정 변수(T)"쪽으로 옮기고, 아래 "검정값(V)"에 0을 적는다. 그리고 "확인"을 누른다.

 

결과

위와 같은 결과를 내는 것을 알 수 있다.

 

 

[SPSS] 대응 표본 T검정 (Paired samples T-test) 정복 완료!

작성일: 2022.11.30.

최종 수정일: 2022.11.30.

이용 프로그램: IBM SPSS v26

운영체제: Windows 10

반응형

+ Recent posts